
*bleed continues:

18 byte file, $14k bounty,

for leaking private Yahoo! Mail images

Chris Evans

Thursday, May 18, 2017

1 Overview

*bleed attacks are hot right now. Most notably, there’s been Heart-
bleed and Cloudbleed. In both cases, out-of-bounds reads in ser-
ver side code resulted in private server memory content being re-
turned to clients. This leaked sensitive secrets from the ser-
ver process’ memory space, such as keys, tokens, cookies, etc.
There was also a recent client-side bleed in Microsoft’s image
libraries, exposed through Internet Explorer. One of the reason
*bleed attacks are interesting is that they are not affected by
most sandboxing, and they are relatively easy to exploit.

Presented here is Yahoobleed #1 (YB1), a way to slurp other users’
private Yahoo! Mail image attachments from Yahoo servers.

YB1 abuses an 0-day I found in the ImageMagick image processing
software. This vulnerability is now a so-called 1-day, because I
promptly reported it to upstream ImageMagick and provided a 1-
line patch to resolve the issue, which landed here. You can refer
to it as CESA-2017-0002.

1

http://twitter.com/scarybeasts
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Cloudbleed
https://bugs.chromium.org/p/project-zero/issues/detail?id=992
https://bugs.chromium.org/p/project-zero/issues/detail?id=992
https://www.imagemagick.org/script/index.php
http://git.imagemagick.org/repos/ImageMagick/commit/1c358ffe0049f768dd49a8a889c1cbf99ac9849b

The previous *bleed vulnerabilities have typically been out-of-
bounds reads, but this one is the use of uninitialized memory. An
uninitialized image decode buffer is used as the basis for an image
rendered back to the client. This leaks server side memory. This
type of vulnerability is fairly stealthy compared to an out-of-
bounds read because the server will never crash. However, the
leaked secrets will be limited to those present in freed heap chunks.

2 Yahoo! response

The Yahoo! response has been one of best I’ve seen. In order:

1. They have a bug bounty program, which encourages and rewards
security research and fosters positive hacker relations, etc.

2. Upon receiveing a bug, they serve a 90-day response deadline
on themselves. This is very progressive and the polar oppo-
site of e.g. Microsoft, who occasionally like to turn reasona-
ble disclosure deadlines into a pointless fight.

3. And indeed the bug was fixed well within 90 days.

4. The communication was excellent, even when I was sending far
too many ping requests.

5. The fix was particularly thorough: ImageMagick was retired.

6. A robust bounty of $14,000 was issued (for this combined with
a similar issue, to be documented separately). $778 per byte
-- lol!

7. I’m donating this reward to charity. Upon being asked about
charitable matching, Yahoo! accepted a suggestion to match (i.e.
double) the reward to $28,000.

8.

2

3 Demos

The attack vector for these demos was to attach the 18-byte ex-
ploit file (or a variant) as a Yahoo! Mail attachment, send it to
myself, and then click on the image in the received mail to launch
the image preview pane. The resulting JPEG image served to my
browser is based on uninitialized, or previously freed, memory
content.

The following three images have had entropy stripped from them
via a variety of transforms. Originals have been destroyed.

3

In image #1, you can see the capital letter A inside a black cir-
cle. Imagine suddenly and unexpectedly seeing this in a returned
image while investigating a vulnerability you expected to be bo-
ring! There are various possible reasons for the repeated nature
of the recovered image -- assuming the original in-memory image
does not consist of a repeated nature.

Most obviously, the in-memory image dimensions probably don’t ma-
tch the dimensions of our uninitialized canvas, 1024x1024 in this
particular case. Depending on how the in-memory image is stored,
this will lead to repetition and / or offsetting as both seen here.

Also, the in-memory image representation might not match the co-
lorspace, colorspace channel order or alpha channel status (yes
or no) of the uninitialized RLE decode canvas. The thumbnail de-
code and re-encode pipeline will leave all sorts of different in
memory artifacts in the course of doing its job.

Don’t be in any doubt though: correct reconstruction of the ori-
ginal image would be possible, but that’s a non-goal.

4

In image #2, you might still be able to make out the remains of a
human face. Perhaps a forehead, perhaps a nose and even a fore-
head and cheekbone? Or maybe not, because of the stripping of en-
tropy and transforms applied. But you can appreciate that at the
time, seeing a random face was a shock and illustrated the seve-
rity of the leak. At that point, I ceased, desisted, destroyed all
files based on uninitialized memory and reported the bug.

5

In image #3, the color has been left in because the image shows
interesting vertical bands of magenta, SkyBlue and yellow. What
in-memory structure leads to this pattern? I have no idea. At
first I was thinking some CMYK colorspace representation but I
don’t think that makes sense. JPEGs are typically coded in the
YCbCr colorspace, so perhaps a partially encoded or decoded JPEG
is involved.

6

https://en.wikipedia.org/wiki/YCbCr

4 The vulnerability

The vulnerability exists in the obscure RLE (Utah Raster Toolkit
Run Length Encoded) image format, which previously featured in
my blog post noting memory corruption in box.com. The new Ima-
geMagick 0-day is in this code snippet here, from coders/rle.c:

pixel_info_length=image->columns*image->rows*
MagickMax(number_planes_filled,4);
pixels=(unsigned char *) GetVirtualMemoryBlob(pixel_info);
if ((flags & 0x01) && !(flags & 0x02))
{

[...]
/*
Set background color.
*/
p=pixels;
for (i=0; i < (ssize_t) number_pixels; i++)
{

[...]
{
for (j=0; j < (ssize_t) (number_planes-1); j++)
*p++=background_color[j];
p++=0; / initialize matte channel */
}

}
}
/*
Read runlength-encoded image.
*/

[...]
do
{
switch (opcode & 0x3f)

[...]
opcode=ReadBlobByte(image);
} while (((opcode & 0x3f) != EOFOp) && (opcode != EOF));

7

https://scarybeastsecurity.blogspot.com/2017/03/black-box-discovery-of-memory.html

It’s a tricky vulnerability to spot because of the abstraction and
also because this is a vulnerability caused by the absence of a
necessary line of code, not the presence of a buggy line of code.
The logic is approximately:

1. Allocate a suitably sized canvas for the image decode. Note
that the GetVirtualMemoryBlob call does NOT guarantee zero-
filled memory, as you would expect if it were backed by mmap().
It’s just backed by malloc().

2. Depending on some image header flags, either initialize the can-
vas to a background color, or don’t.

3. Iterate a loop of RLE protocol commands, which may be long or
may be empty.

4. After this code snippet, the decoded canvas is handed back to
the ImageMagick pipeline for whatever processing is underway.

As you can now see, the attacker could simply create an RLE image
that has header flags that do not request canvas initialization,
followed by an empty list of RLE protocol commands. This will re-
sult in an uninitialized canvas being used as the result of the
image decode. Here’s an RLE file that accomplishes just that. It’s
just 18 bytes!

8

And these 18 bytes parse as follows:
52 CC: header

00 00 00 00: top, left at 0x0.

00 04 00 04: image dimensions 1024 x 1024

02: flags 0x02 (no background color)

01: 1 plane (i.e. grayscale image)

08: 8 bits per sample

00 00 00: no color maps, 0 colormap length, padding

07: end of image (a protocol command is consumed pre-loop)

07: end of image (end the decode loop for real)

There are a few bytes that are important for experimentation of
exploitation: the number of planes (i.e. a choice between a greys-
cale vs. a color image), and the image dimensions, which deter-
mine the size of the unininitialized malloc() chunk.

5 Exploitation

Exploitation is an interesting discussion. Here are some of the
factors that affect exploitation of this vulnerability, both ge-
nerally and in the Yahoo! case specifically:
* Decoder lockdown. Yahoo! did not appear to implement any form

of whitelisting for only sane ImageMagick decoders. RLE is not a
sane decoder on the modern web. Anyone using ImageMagick really
needs to lock down the decoder list to just the ones needed.
* Sandboxing. As noted above, sandboxing doesn’t have much of

an effect on this vulnerability type. Although it doesn’t make much
difference, my best guess is that the server in question might be
using Perl and PerlMagick, as well as handling various network
traffic, suggesting that a tight sandbox policy is difficult wit-
hout extensive refactoring.
* Process isolation. This is critical. *bleed bugs for most usa-

ges of ImageMagick are mostly harmless because it’s typical to
kick off e.g. a thumbnail request by launching the ImageMagick
convert binary, once per thumbnail request. This means that the
process memory space of the exploited process is only likely to
contain the attacker’s image data, making exploitation much less
interesting (but not irrelevant as we saw in my recent Box and

9

DropBox blog posts).

The Yahoo! Mail process which is handling thumbnailing has an
unusual property, though: it appears to be long lived and to pro-
cess images from a variety of different users. Suddenly, a memory
content leak is a very serious vulnerability.
* Heap implementation. The heap implementation used is signi-

ficant. For the input RLE file decomposed above, the canvas al-
location is 1024 x 1024 x 4, or 4MB. This is large allocation and
for example, the default malloc() tuning on Linux x86_64 leads to
such a large allocation being satisfied by mmap(), which zero-
fills memory and will not lead to interesting memory content le-
akage! However, we definitely see leaked heap content with such
a large allocation in the Yahoo! context, so a non-default heap
setup is clearly in use. With our ability to leak heap content,
we could likely fingerprint the exact heap implementation if we
cared to do so. Who knows, maybe we’d find tcmalloc or jemalloc,
both popular allocators with large service providers.
* Thumbnail dimensions. It’s worth a brief note on thumbnail

dimensions. If we’re in a situation where our uninitialized can-
vas gets resized down to a smaller thumbnail, this would compress
out detail from the original leaked memory content. This would
spoil certain exploitation attempts. However, Yahoo! Mail’s pre-
view panel seems to display very large images (tested to 2048x2048)
verbatim, so no worries here. * Thumbnail compression. This one
is interesting. Yahoo! Mail returns thumbnails and image pre-
views as JPEG images. As we know, JPEG compression is lossy. This
is not a particular issue if we’re only interested in pulling image
data out of Yahoo! servers. But if we’re interested in looking at
raw bytes of Yahoo! server memory, then lossy compression is lo-
sing us data.

As an example of this, I tried to extract concrete pointer values
from memory dumps -- perhaps we want to remotely defeat ASLR?
I used greyscale images because JPEG compresses color data more
than it compresses intensity data. But still, with a 16-byte sized
data exfiltration I see pointer values such as 0x020081c5b0be476f
and 0x00027c661ac2722a. Hmm. You can see that these may be trying
to be Linux x86_64 user space pointers (0x00007f....) but there’s
a lot of information loss there.

10

I think it would be possible to overcome this exfiltration pro-
blem. Most likely, there’s some thumbnailing endpoint that re-
turns (or can be asked to return with some URL parameter) los-
sless PNG images, which would do the trick. Or for the brave, mat-
hematical modelling of JPEG compression??

6 Conclusions

Broadly: in a world of decreasing memory corruption and increa-
sing sandboxing, *bleed bugs provide a compelling option for ea-
sily stealing information from servers.

On design: taking a long running process and linking in ImageMa-
gick as a library has to be a discouraged design choice, as it ta-
kes bugs that might not be very serious and makes them very seri-
ous indeed. Limiting ImageMagick decoders to a minimal required
set is a must for any processing of untrusted input.

GraphicsMagick vs. ImageMagick, again. Well, well, look at this
:) GraphicsMagick fixed this issue in March 2016, for the v1.3.24
release, tucked away in a changeset titled “Fix SourceForge bug”
#371 “out-of-bounds read in coders/rle.c:633:39” (see the second
memset()). This is another case where tons of vulnerabilities are
being found and fixed in both GraphicsMagick and ImageMagick with
little co-ordination. This seems like a waste of effort and a risk
of 0-day (or is it 1-day?) exposure. It goes both ways: the RLE
memory corruption I referenced in my previous blog post was only
fixed in GraphicsMagick in March 2016, having been previously fixed
in ImageMagick in Dec 2014.

Linux distributions. This vulnerability is now 1-day in the sense
that it is broadly unpatched by entities that repackage upstream
ImageMagick, such as Linux distributions. (As a side note, it’s
worth noting that the RLE decoder in Ubuntu 16.04 LTS is totally
borked due to a bogus check that can be seen getting removed here.)

But most significantly for this conclusion, I wanted to highlight
some questions about ecosystem responsibility.

11

http://hg.code.sf.net/p/graphicsmagick/code/diff/0a5b75e019b6/coders/rle.c
http://hg.code.sf.net/p/graphicsmagick/code/diff/c6a6ea253a35/coders/rle.c
http://git.imagemagick.org/repos/ImageMagick/commit/7131d8ff451a1d5163e7e35b7a910df80cb54fab
http://git.imagemagick.org/repos/ImageMagick/commit/7131d8ff451a1d5163e7e35b7a910df80cb54fab
https://github.com/ImageMagick/ImageMagick/commit/f739cf56af7383b13d8e7b39961c27948fa14876#diff-04a2246f61d47b9ede94e0648dac2f44

Researcher responsibility
what is a researcher’s responsibility and where does it end? As
a researcher who becomes aware of a software risk, I believe I
have a responsibility to let the “owner” of that software immedi-
ately know about the issue and the fact that I think it’s a secu-
rity risk. Let’s assume that the owner makes a fix in a reasona-
ble time. Are we good now? Well, what about all the downstream
usages (eventually cascading to end users) that don’t yet have
the fix? So is it my responsibility to go and find and harangue
every cloud provider that is affected? No, probably not. We might
let one or two providers with bounty programs know as a positive
feedback for encouraging security research, but the broader pro-
blem remains.

Upstream vendor responsibility
how should the upstream vendor respond to a security report ot-
her than identifying it (if not already clearly flagged) and fix-
ing it promptly? Personally, I think there should be some form of
notification in a well defined place (mailing list; web site an-
nouncement area; etc.) and the upstream vendor could also take
the burden of getting the CVE. Consumer responsibility: what should
consumers such as Yahoo!, Box, DropBox, Ubuntu, etc. do? Well,
if the upstream vendor is doing a good job, the consumer security
teams can all be subscribed to the same authoritative source and
take action whenever a new announcement is made. (Probably less
trivial than it sounds; both Box and Yahoo! appear to have been
running old versions of ImageMagick with known vulnerabilities.)

Original source
Conversion by Ange Albertini

12

https://scarybeastsecurity.blogspot.com/2017/05/bleed-continues-18-byte-file-14k-bounty.html
http://twitter.com/angealbertini

	Overview
	Yahoo! response
	Demos
	The vulnerability
	Exploitation
	Conclusions

